
Journal of Biomolecular NMR, 22: 349–363, 2002.
KLUWER/ESCOM
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

349

Automated NMR determination of protein backbone dihedral angles from
cross-correlated spin relaxation

Karin Kloibera, Wolfgang Schülerb & Robert Konratc,∗
Institute of Organic Chemistry, University of Innsbruck, Austria

Received 4 February 2002; Accepted 6 February 2002

Key words: chemical shift anisotropy, cross-correlated spin relaxation, dihedral angles, multiple-quantum
coherence, NMR spectroscopy, protein structure determination

Abstract

The simultaneous interpretation of a suite of dipole-dipole and dipole-CSA cross-correlation rates involving the
backbone nuclei 13Cα, 1Hα,13CO, 15N and 1HN can be used to resolve the ambiguities associated with each indi-
vidual cross-correlation rate. The method is based on the transformation of experimental cross-correlation rates via
calculated values based on standard peptide plane geometry and solid-state 13CO CSA parameters into a dihedral
angle probability surface. Triple resonance NMR experiments with improved sensitivity have been devised for the
quantification of relaxation interference between 1Hα(i)-13Cα(i)/15N(i)-1HN(i) and 1Hα(i−1)-13Cα(i−1)/15N(i)-
1HN(i) dipole-dipole mechanisms in 15N,13C-labeled proteins. The approach is illustrated with an application to
13C,15N-labeled ubiquitin.

Introduction

NMR cross-correlation spin relaxation rates are now
well-established as important sources of structural
and dynamic information about molecules in solu-
tion. To date, a set of experiments exists, which
measures the cross-correlated fluctuations of differ-
ent dipolar couplings (Reif et al., 1997; Pelupessy
et al., 1999; Chiarparin et al., 1999, 2000), dipo-
lar couplings and anisotropic chemical shifts (Yang
et al., 1997, 1998; Yang and Kay, 1998; Kloiber and
Konrat, 2000a,b, 2001; Sprangers et al., 2000) or dif-
ferent chemical shift tensors (Skrynnikov et al., 2000).
Cross-correlated spin relaxation provides unique ac-
cess to structurally relevant dihedral angles of the
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protein backbone. The good sensitivity of the spectra
allowed applications to systems as large as 42 kDa
(Yang et al., 1998). Applications to nucleic acids
(Felli et al., 1999; Richter et al., 1999; Boisbouvier
et al., 2000; Chiarparin et al., 2001), weakly bind-
ing ligands complexed to their receptors (Blommers
et al., 1999; Carlomagno et al., 1999) and a catalytic
intermediate of a metal-catalyzed substitution reac-
tion (Junker et al., 2000) have also been reported,
thus underscoring the general applicability of these
methods.

Although there are numerous examples illustrating
the sensitivity of the experimental techniques and the
accuracy of the obtained dihedral angles (Reif et al.,
1997; Yang et al., 1997, 1998; Yang and Kay, 1998;
Pelupessy et al., 1999; Chiarparin et al., 1999, 2000;
Kloiber and Konrat, 2000a,b; Skrynnikov et al., 2000),
a general application, however, is still hampered due
to the multiplicity of dihedral angles related to only
a single relaxation rate. Approaches to overcome this
limitation have been proposed for the dihedral angle
ψ (Yang and Kay, 1998) and ϕ (Kloiber and Konrat,
2000a) by combining measurements from 13Cα-1Hα

dipolar 15N-1HN dipolar and 13Cα-1Hα dipolar 13C′
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Figure 1. Pulse schemes for the quantification of (A) 13Cα(i)-1Hα(i)/15N(i)-1HN(i) and (B) 13Cα(i−1)-1Hα(i−1)/15N(i)-1HN(i) dipole-dipole
relaxation interference in 13C,15N-labeled proteins. Narrow and wide pulses indicate 90◦ and 180◦ pulses, respectively, and, unless indicated
otherwise, all pulses are applied along the x-axis. The 1H, 13C and 15N carriers were positioned at 4.72 ppm (water), 175 ppm and 119 ppm.
The water-selective 1H 90◦ pulse (after the INEPT period) is applied as a 2.2 ms rectangular pulse, with the carrier on the water resonance.
15N pulses use a 6 kHz field, with GARP (Shaka et al., 1983) decoupling achieved with a 1kHz field. All carbon rectangular pulses employed
rf field strengths adjusted �/

√
15, where � is the difference between 13Cα and 13C′ chemical shift regions. The 13Cα-15N multiple-quantum

evolution period (4TC) is shown in gray. (A) HNCA-type experiment for measurement of 13Cα(i)-1Hα(i)/15N(i)-1HN(i) cross-correlations.
13C′ decoupling during the 1,2JNCα evolution delay and the indirect evolution times t1 and t2 is achieved with a SEDUCE (McCoy, 1996)
decoupling scheme (345 µs, 3 kHz peak rf). 13Cα shaped pulses make use of RE-BURP profiles (Geen and Freeman, 1991). The non-selective
13Cα (also inverting the 13Cβ spins) refocusing pulses (first and third shaped pulses) are 400 µs (15.5 kHz peak rf, excitation centered at
50 ppm), while the selective 13Cα refocusing pulse (second shaped pulse) is of duration 2 ms (3.2 kHz peak rf, excitation centered at 55 ppm).
The simultaneous amide inversion pulse was also issued as an RE-BURP (Geen and Freeman, 1991) and centered at 7.9 ppm with 3.09 ms
and 2.0 kHz peak rf. Two experiments are recorded which select at time point a in the sequence either 2Cα

x Nx (reference experiment I)
or 8Cα

y NyHα
z HN

z (cross experiment II) (see Materials and methods). Experimental conditions for experiment I are as follows: the 1H 180◦
embraced with brackets is omitted, the phases of the 90◦ pulses at time points a (13C and 15N) and b (13C) are y and x, and ξ = 1/(41JNH);
whereas in experiment II the 1H 180◦ pulse (in the middle of 2ζ; ζ = 1/(41JCH) is applied, the phases of the 90◦ pulses at time points a (13C
and 15N) and b (13C) are x and y, and ξ = 0. The values for τa, τb, τc, τf, ξ and ζ were set to 2.25 ms, 5.3, 12.4, 0.5, 2.63 and 1.78 ms,
respectively. TC = 6.5 ms; TN = 12.4 ms. The phase cycling was �1 = x,−x; �2 = x,x,−x,−x; �3 = x; �4 = y; �5 = 4(x),4(−x), �6 = x;
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�7 = x; and the receiver was x,−x,−x,x. Quadrature detection in F1 is achieved by States-TPPI of �3 (Marion et al., 1989) while quadrature
in F2 employs the enhanced sensitivity pulsed field gradient method (Kay et al., 1992; Schleucher et al., 1993) where for each value of
t2 separate data sets are recorded for (g6, �7) and (−g6, �7 +180◦). For each successive t2 value, �4 and the phase of the receiver
are incremented by 180◦. Gradient levels were as follows: g1=0.5 ms, 8 Gcm−1; g2 = 0.5 ms, 4 Gcm−1; g3 = 1.0 ms, 10 Gcm−1;
g4 = 0.5 ms, 8 Gcm−1; g5 = 0.6 ms, 10 Gcm−1; g6 = 1.25 ms, 20 Gcm−1; g7 = 0.5 ms, 8 Gcm−1; g8 = 0.3 ms, 2 Gcm−1 and
g9 = 0.125 ms, 19.3 Gcm−1. (B) HNCOCA scheme to measure 13Cα(i−1)-1Hα(i−1)/15N(i)-1HN(i) dipole-dipole relaxation interference.
The delay τd = 1/2JC′Cα was set to τd = 11 ms. Arrows indicate the positions of Bloch-Siegert compensation pulses. 13Cα decoupling during
indirect 15N evolution time t2 is achieved with a SEDUCE (McCoy and Mueller, 1992) decoupling scheme (345 µs, 3 kHz peak rf). The
phase cycling was �1 =x,−x; �2 = x,x,−x,−x; �3 = 8(x),8(y); �4 = 4(y),4(−y); �5 = y, �6 = 4(x),4(−x); �7 = x and the receiver was
(x,−x,−x,x),(−x,x,x,−x),(−x,x,x,−x),(x,−x,−x,x). Quadrature detection in F1 is achieved by States-TPPI of �2 (Marion et al., 1989) while
quadrature in F2 employs the enhanced sensitivity pulsed field gradient method (Kay et al., 1992; Schleucher et al., 1993) where for each value
of t2 separate data sets are recorded for (g6, �7) and (−g6, �7 +180◦). For each successive t2 value, �5 and the phase of the receiver are
incremented by 180◦. Gradient levels and other experimental parameters are as in (A).

CSA cross-correlation rates, leading to a reduction in
the number of possible ψ,ϕ values by a factor of 2.

In this report we demonstrate that by a combination
of five cross-correlated NMR spin-relaxation rates for
the protein backbone nuclei and the 3JC′C′ scalar cou-
pling constants (related to the dihedral angle ϕ), an un-
ambiguous determination of the protein backbone di-
hedral angles is feasible. To this end, we present a new
method for the measurement of relaxation interference
between 1Hα(i)-13Cα(i)/15N(i)-1HN(i) and 1Hα(i−1)-
13Cα(i−1)/15N(i)-1HN(i) dipole-dipole mechanisms
in 15N,13C-labeled proteins. The new experiments are
based on quantitative �-spectroscopy and refocus pas-
sive 1,2JNCα scalar couplings which results in a signifi-
cant gain in sensitivity. Experimental cross-correlation
rates are transformed into a ϕ(i)/ψ(i−1) dihedral an-
gle probability surface by minimizing a suitable error
function. The method is related to a recently pro-
posed graphical construction which also made use of
the complementarity of cross-correlation rates mea-
sured for two consecutive amino acids and which was
demonstrated to resolve contradictions from NMR
cross-correlation rates (Tolman et al., 2000).

Materials and methods

All NMR experiments were performed on a Varian
UNITY Plus 500 MHz spectrometer equipped with a
pulsed field gradient (PFG) unit using a triple reso-
nance probe with actively shielded z gradients. Uni-
formly 13C,15N-labeled ubiquitin was provided by J.
Wand (University of Pennsylvania). The concentra-
tion was 1.5 mM, with 50 mM phosphate buffer,
pH = 5.5, in 90% H2O/10% D2O. All spectra were
recorded at 26 ◦C. The 1H carrier was set to the fre-
quency of the water resonance (4.76 ppm), and the
15N carrier frequency was set to 116 ppm. CSA-dipole

cross-correlation rates were measured as described
elsewhere (Yang et al., 1997, 1998; Yang and Kay,
1998; Kloiber and Konrat, 2000a). The experiment for
the measurement of the relative orientation of succes-
sive Cα-Hα bond vectors was performed as published
(Chiarparin et al., 2000). The experiment was per-
formed twice, using two different relaxation delays
(15 ms and 20 ms) for the extraction of the dipole-
dipole cross-correlation rate. Hα(i)Cα(i)/HN(i)N(i)
and Hα(i−1)Cα(i−1)/HN(i)N(i) dipole/dipole ex-
periments are based on so-called quantitative �-
spectroscopy and are of the HNCA and HNCOCA
type. Experiments devised by the group of Boden-
hausen were modified to refocus the passive 1,2JNCα

couplings. 3JC ′C ′ values were taken from the literature
(Hu and Bax, 1996). Data were processed and ana-
lyzed using the programs NMRPipe (Delaglio et al.,
1995) and PIPP/CAPP (Garrett et al., 1991). Peak
intensities were used to quantify cross-correlated re-
laxation rates. To facilitate peak picking procedures
of the CSA/DD cross-correlation experiments (Yang
et al., 1997, 1998; Yang and Kay, 1998; Kloiber and
Konrat, 2000a) using NMRView software (Johnson
and Blevins, 1994), in-house written scripts were de-
vised to construct peak lists with frequency positions
of the doublet components in the HNCO-type cross-
correlation experiments. Peak lists were also gener-
ated automatically for the quantitative �-experiments
on the basis of an HNCA (CαHα(i)-NHN(i)) or 15N-
HSQC (CαHα(i−1)-CαHα(i)) assignments, respec-
tively. HNCOCA-type DD/DD (CαHα(i−1)/NHN(i))
cross-correlation experiments can either be analyzed
as a 3D HNCO experiment (3D version, Figure 1B) or
(in case of sufficient spectral resolution) as a conven-
tional 2D 15N-HSQC. The scripts are available from
the authors upon request.
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Experimental measurement of �Hα(i)Cα(i),H(i)N(i) and
�Hα(i−1)Cα(i−1),H(i)N(i)

The sequences for measuring �Hα(i)Cα(i),HN(i)N(i) (Fig-
ure 1A) and �Hα(i−1)Cα(i−1),HN(i)N(i) (Figure 1B)
dipole-dipole cross-correlation rates are related to re-
cently published sequences (Pelupessy et al., 1999a,
1999b) and are illustrated in Figure 1. The experi-
ments for �Hα(i)Cα(i),H(i)N(i) and �Hα(i−1)Cα(i−1),H(i)N(i)
are closely related to the sequences devised by Bo-
denhausen and co-workers (Pelupessy et al., 1999a,
1999b) in terms of the flow of magnetization.
The sequence for �Hα(i)Cα(i),H(i)N(i) is based on an
HNCA experiment (Kay et al., 1990), whereas
�Hα(i−1)Cα(i−1),H(i)N(i) is obtained from an HNCOCA
type experiment (Bax and Ikura, 1991). Details of
the magnetization transfer can be found in the lit-
erature (Kay et al., 1990; Bax and Ikura, 1991;
Pelupessy et al., 1999a,b). An important modification
of the HNCOCA-type cross-correlation experiment,
however, is that 13C′ chemical shift is recorded dur-
ing t1 (instead of 13Cα) in a constant time manner
(2τd , Figure 1B). In what follows we focus on the
modified 15N-13Cα multiple-quantum evolution pe-
riod during which the 13Cα-1Hα and 15N-1HN dipole
interactions evolve. Figure 1 (shaded boxes) illus-
trates the pulse sequence element which is used in
both sequences to quantify the relaxation interference.
The simultaneous 13C and 15N 90◦ rf pulses create
2Cα

xNx, which can be written as a sum of DQ and
ZQ coherences. Two considerations are important.
First, cross-correlation between 13Cα-1Hα and 15N-
1HN dipole interactions must proceed for the complete
relaxation period (4TC). This is achieved by ensuring
that the relative signs of the cross-correlation active
dipolar Hamiltonians are not changed but preserved
throughout the entire relaxation period. The simulta-
neous application of the amide 1HN selective and the
13Cα inversion pulse in the middle of the relaxation
period does not change the sign of the product of the
two Hamiltonians and thus leaves the magnitude of
the cross-correlation rate unchanged. Refocusing of
15N chemical shift evolution during the 1HN inversion
and 13Cα refocusing pulses is achieved by the two
180◦ 15N rf pulses and by accounting for the length of
the 1HN and 13Cα pulses in the relaxation delay; the
second and third TC element is reduced by the pulse
length of the longer shaped pulse, either 1HN or 13Cα.
In the present case, the following pulse lengths for the
1HN and 13Cα selective pulses were used: 1HN: RE-
BURP (Geen and Freeman, 1991): 3.09 ms; 13Cα: RE-

BURP (Geen and Freeman, 1991): 2.0 ms. The length
of the two individual TC elements were corrected ac-
cordingly to TC − 0.5∗pw180◦ (1HN). 13Cα-1Hα and
15N-1HN dipole cross-correlations are active during
both 1HN and 13Cα selective pulses and only mar-
ginally reduced (Yang and Kay, 1998). No corrections
for this effect were thus employed.

Secondly, 1,2JNCα passive scalar couplings de-
crease the sensitivity of the experiment due to the
build-up of unwanted anti-phase magnetizations (e.g.,
4Cα

xNyNz, 4Cα
xNyCα

z , 8Cα
yNyCα

z Nz). As can be seen
from Figure 1, this effect is suppressed through the
application of the 13Cα selective refocusing pulse in
the middle of the relaxation period. Additionally, evo-
lution under the homonuclear 1JCαCβ is suppressed by
the refocusing pulse. It is thus not necessary to adjust
the relaxation period to 4TC = = 1/1JCαCβ. Although
the signal intensities of residues for which 13Cβ shifts
are within the bandwidth of the RE-BURP pulse (e.g.,
Ser, Thr or Leu residues, respectively) are reduced, the
extracted cross-correlation rates are not affected. Typ-
ical experimental results obtained on 13C,15N-labeled
ubiquitin are shown in Figure 2. Due to the good
spectral resolution in the 15N-1H HSQC of ubiquitin
a 2D version of the HNCOCA sequence of Figure 1B
was recorded (by omitting the 13C′ indirect evolution
period t1).

To obtain �Hα(i)Cα(i),H(i)N(i) and �Hα(i−1)Cα(i−1),

H(i)N(i) cross-correlation rates, two sets of comple-
mentary experiments were recorded, as described
previously (Pelupessy et al., 1999a,b). The dipole-
dipole cross-correlation leads to a partial conversion of
2Cα

xNx into 8Cα
yHα

z NyHN
z (Chiarparin et al., 1999). In

experiment I, the signal intensity is proportional to the
expectation value of the two-spin coherence 2Cα

xNx,
(selected by phase = y of the rf pulses at time point a in
the sequence), whereas in experiment II signal arising
from cross-correlation, 8Cα

yHα
z NyHN

z , are recorded (at
time point a: phase = x). In experiment I, evolution
due to 1JCH is refocused (omitting the 1H 180◦ shown
in brackets in Figure 1, the phase of 13C,15N, at time
point b being = x), whereas 1JNH evolves during the
constant time period TN (where the 15N chemical shift
is recorded) for the time 2ξ = 1/(2JNH) (Figure 1). In
the second experiment II, the coherence 8Cα

yHα
z NyHN

z

is selected. This is achieved by applying the 1H 180◦
(the scalar coupling evolves for the time 2ζ = 1/2JCH),
setting the phase of 13C and 15N rf pulses (at time point
b) to y, and by adjusting the delay ξ = 0. The cross-
correlation rates can be obtained from the ratio of the
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Table 1 Parameters in cross-correlation spectra (ubiquitin)

Experiment Data matrix Relaxation delay Experimental time

�Hα(i)Cα(i),H(i)N(i) 25×22×512 15 ms 43 h

�Hα(i−1)Cα(i−1),H(i)N(i) 2D:32×512)a / 15 ms 1.6 h/20 h

3D:13×25×512

�C′(i−1),Hα(i)Cα(i) 25×25×512 26 ms 48 h

�C′(i−1),Hα(i−1)Cα(i−1) 25×25×512 26 ms 48 h

�Hα(i−1)Cα(i−1),Hα(i)Cα(i) 2D:32×512 15 ms and 20 msb 1.6 h/20 h

aIn the 2D version of the experiment, 80 and 1024 scans were used for the reference and
cross experiment, respectively.
bAverage cross-correlation rates were used.

Figure 2. Experimental results for 13C,15N-labeled ubiquitin using the sequences of Figure 1. (A,B) F1-F3 cross sections through the 3D
spectra (Figure 1A) at selected 15N chemical shifts. The 2D planes selected at the 15N frequency, F2 = 125.1 ppm, in (A) and (B)
correspond to the reference and cross experiment, respectively. F1 slices through the cross peak indicated with the dotted line illustrate the
achieved S/N ratio of the data set. (C,D) Representative regions of the 2D HNCOCA cross-correlation experiment (Figure 1B) for measuring
�Hα(i−1)Cα(i−1),H(i)N(i) (recorded by omitting the 13C′ indirect evolution time t1), (C) reference and (D) cross experiment (negative cross
peaks are shown in bold). Experimental parameters are given in the legend of Figure 1 and Table 2.
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signal intensities in the two experiments as described
below (Pelupessy et al., 1999; Chiarparin et al., 1999,
2000). For the measurement of �Hα(i)Cα(i),HN(i)N(i) and
�Hα(i−1)Cα(i−1),HN(i)N(i), data sets with TC of 15 ms
were recorded. It should be noted that differential
amide proton T1 relaxation and intermolecular ex-
change between amide protons and water molecules in
experiments I and II lead to a slight reduction of sig-
nal intensities in the cross-correlation experiment (II).
These effects were estimated to reduce the observed
signal intensities in the cross-correlation experiment II
by about 15%. In order to ensure that this signal reduc-
tion does not spoil the accuracy of the extracted dihe-
dral angles, numerical analysis have been performed
for reduction levels of 10, 15 and 20%, respectively.
No significant changes (less than 5◦) in extracted di-
hedral angles were observed, thus corroborating the
reliability of the approach. However, differential in-
termolecular exchange in experiments I and II can be
avoided by adding a 1H 180◦ pulse at time point a in
the sequence of experiment I, and a 180◦ phase shift of
the 1H 90◦ pulse after the 15N chemical shift evolution
TN in both experiments (I and II). Experimental para-
meters used to record cross-correlation spectra and a
list of experimentally obtained S/N values are given
in Tables 1 and 2. Figure 3 demonstrates the cor-
relation between experimental cross-correlation rates
and calculated values based on the crystal structure
(Vijay-Kumar et al., 1987).

Error analysis of individual rates for ubiquitin

Error propagation was obtained from a Monte Carlo
error analysis (Kamath and Shriver, 1989; Palmer,
et al., 1991) and has been described elsewhere
(Kloiber and Konrat, 2000a). To this purpose, a
Gaussian distribution of peak intensities was assumed,
centered at the measured value with the root-mean-
square base-line noise (estimated by NMRPipe) as
standard deviation of the distribution. Typically, 1000
simulated data sets were chosen at random from these
distributions to extract cross-correlation rates and er-
rors.

Generation of the dihedral angle probability surface
(Z-surface)

The Z-surface has been defined as the probability of
a certain experimental parameter � to result from a
particular set of backbone dihedral angles ϕ and ψ.
The Z-surface was generated following the strategy

described by Oldfield and co-workers (Le et al., 1995).
Zi for a specific cross-correlation rate is defined as

Zi = exp{−��2
i (1 − Pi)}, (1a)

Pi = exp{−[��2
i /(2σ2

i )]} (1b)

where ��i is the difference between experimental and
calculated rate. To include experimental errors, the
square difference is weighed with a factor proportional
to a Gaussian probability Pi; σi is the associated ex-
perimental error of the rate �i (which corresponds to
the uncertainty in the deviation). As a consequence,
data with large errors contribute a smaller penalty
to the fit. As an additional spectral parameter we
included the homonuclear 3JC ′C ′ scalar coupling con-
stant (Hu and Bax, 1996). This parameter turned out
to be of crucial importance to unambiguously identify
backbone dihedral angles in the β-sheet region of Ra-
machandran space (see below). The total Z surface is
obtained by taking the product of the individual cross-
correlation probabilities, Z=Z1Z2Z3...ZN , where N is
the number of available experimental parameters. Ta-
ble 3 lists the experimental parameters which were
used in the construction of the Z-surface. Note that
�Hα(i−1)Cα(i−1),Hα(i)Cα(i) probes the pseudodihedral
angle � which is defined by two planes subtended by
the atoms {α(i−1), Cα(i−1), Hα(i) and Cα(i)} and
which is in turn related to the backbone dihedral an-
gles as � = ψ(i−1) + ϕ(i) (Chiarparin et al., 2000).
The Z-surface is thus defined as the ϕ(i),ψ(i−1)-
probability of the observed experimental parameters.
A similar graphical construction was recently used
to resolve contradictions from overdetermined NMR
cross-correlation rates (Tolman et al., 2000). To better
illustrate the strategy, a hypothetical construction of
a protein Z-surface using the spectral parameters of
Table 3 is shown in Figure 4. Whereas a single experi-
mental parameter is consistent with a multitude of so-
lutions (Figure 4A), multiplication with the Z-surfaces
of additional experimental parameters reduces the set
of solutions to a single pair of ϕ(i),ψ(i−1) values
(Figure 4B-4E).

The theoretical cross-correlation rates in Equa-
tion 1 were calculated assuming the slow-motion limit
(neglecting high-frequency J(ωC) components).

CSA-DD cross correlation rates �C ′,HαCα are re-
lated to the dihedral angle by the analytical expression
(Goldman, 1984):

�C′,HαCα = (4/15)(h/2π)ωCγCγH(rCH)−3

τC(fX + fY + fZ),
(2)
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Table 2. Average signal-to-noise ratios of the dipole-dipole and CSA-dipole
cross-correlation experiments obtained on 13C,15N-labeled ubiquitin

Experiment Ubiquitin Pulse sequence

�Hα(i)Cα(i),H(i)N(i)
a 10 ± 7.6/102 ± 49 Figure 1A

�Hα(i−1)Cα(i−1),H(i)N(i)
a 4.5 ± 3.0/50 ± 14 Figure 1B

�C′(i−1),Hα(i)Cα(i)
b,c 45 ± 19/41 ± 17 Kloiber and Konrat, 2000a

�C′(i−1),Hα(i−1)Cα(i−1)
b 68 ± 24/62 ± 2 Yang et al., 1998

�Hα(i−1)Cα(i−1),Hα(i)Cα(i)
a 11 ± 10/42 ± 22 Chiarparin et al., 2000

aTwo S/N values corresponding to the cross-order reference experiments are given.
bTwo S/N values corresponding to the two multiplet components are given.
cThe average S/N value of the reference experiment were as follows: Ubiquitin: 52 ± 21
(intra-residue)/ 22 ± 5 (inter-residue) (Kloiber and Konrat, 2000a).

Table 3. Experimental parameters used for the construction of the Z-surface for
Ubiquitin

Parameter Angle Experiment

�Hα(i)Cα(i),H(i)N(i) ϕ(i) Figure 1A

�Hα(i−1)Cα(i−1),H(i)N(i) ψ(i−1) Figure 1B

�C′(i−1),Hα(i)Cα(i) ϕ(i) Kloiber and Konrat, 2000a

�C′(i−1),Hα(i−1)Cα(i−1) ψ(i−1) Yang et al., 1998

�Hα(i−1)Cα(i−1),Hα(i)Cα(i) {ψ(i−1), ϕ(i)} Chiarparin et al., 2000
3JC′C′ ϕ(i) Hu and Bax, 1996

where γi is the gyromagnetic ratio of nucleus i, ωC =
γCB0, rCH is the CαHα bond length (set to 1.09 Å), τC
is the correlation time describing the overall tumbling
of the assumed rigid and isotropically tumbling mole-
cule, and the factors fi are projections of the dipolar
vector onto the principal components of the carbonyl
CSA tensor, 1

2 (3cos2θi − 1). The angles θi are related
to the dihedral angle ϕ and ψ in the following way
(Yang et al., 1997; Kloiber and Konrat, 2000a):

cos θx = −0.3095 + 0.3531 cos(ϕ + D), (3a)

cos θy = −0.1250 − 0.8740 cos(ϕ + D), (3b)

cos θz = −0.9426 sin(ϕ + D), (3c)

D is −120◦ in case of �C′(i−1),HαCα(i−1) and 120◦ in
case of �C′(i−1),HαCα(i) for non-glycine residues. If
glycine is involved, the rates are the sums of both ex-
pressions (D = −120◦ and +120◦). In the calculation
values of 244, 178 and 90 ppm were employed for σxx,
σyy and σzz, with x and y axes located in the peptide
plane and the y axis of the CSA tensor rotated by 8◦
with respect to the carbonyl bond (Teng et al., 1992).

Dipole-dipole cross-correlation rates �HαCα,HN
were calculated according to

�HαCα,HN = (2/5)(h/2π)2γCγNγ2
H(rCH)−3(rNH)−3

τC(3 cos2 θ − 1)/2,
(4)

where the symbols have their ususal meaning, rNH
is the NH bond length (set to 1.0 Å). The projection
angles θ in the two experiments are related to the
backbone dihedral angles ϕ and ψ (Reif et al., 1997;
Pelupessy et al., 1999a) according to

cos(θ) = 0.163 + 0.819 cos(ψ − 120◦, ) (5a)

cos(θ) = 0.163 − 0.819 cos(ϕ − 60◦), (5b)

where planar peptide bond geometry and a trans con-
figuration has been assumed. The dipole-dipole cross-
correlation rate �Hα(i−1)Cα(i−1),Hα(i)Cα(i) is given by

�Hα(i−1)Cα(i−1),Hα(i)Cα(i) =
(2/5)(h/2π)2γ2

Cγ2
H(rCH)−6τC(3 cos2 θ − 1)/2 (6)

where θ is the angle subtended between successive Cα-
Hα vectors cosθ is related to angles �(i−1) and ϕ(i)
by (Chiarparin et al., 2000)

cos(θ) = −0.106 + 0.894 cos(ψ(i − 1)

+ϕ(i) − 180◦). (7)
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Equations 2–7 can be rearranged to Karplus rela-
tions of the usual form (Sprangers et al., 2000)

� = A cos2(α) + B cos(α) + C, (8)

Karplus relations were used to calculate theoretical
rates encountered in the generation of Z-surfaces as
a function of dihedral angles ϕ(i) and �(i−1). The
Karplus parameters for cross-correlation rates and the
3JC′(i)C′(i+1) scalar coupling constants are summarized
in Table 4.

Extraction of experimental cross-correlation rates
is based on the following relationships:

�CSA/DD = 1/(2TC) ln(Idf/Iuf)/S2, (9a)

�DD/DD = 1/(2TC) tanh−1(Icross/Iref)/S2, (9b)

3JC′(i)C′(i+1) = 1/(2πTC) tan−1 √
(−Icross/Iref) (9c)

where Iuf/Idf are the upfield/downfield components
of the resolved multiplett lines and Icross/Iref refer to
the complementary data sets in the quantitative �-
experiments. Tc is the respective constant time delay.
To account to some extent for internal dynamics, ex-
perimental rates have been scaled with the 15N order
parameter S2 (Tjandra et al. 1995) which has been as-
sumed to be representative for ps to ns motion of the
entire peptide plane.

Note that the extraction of experimental rates
�C′(i−1),Hα(i)Cα(i) (associated with the angle ϕ is
somewhat more complicated, since the experi-
ment involves simultaneous excitation of coherences
2C′

x(i−1)Cα
x(i−1) and 2C′

x(i−1)Cα
x(i) which depend

on �(i−1) and ϕ(i), respectively. In order to discern
the contributions, a reference experiment has to be
recorded to determine effective transfer efficiencies to
the intra- and interesidue Cα atoms that are determined
by differences in scalar coupling between 15N and
13Cα and different transverse relaxation times of Cα.
The exact description of the experiment and extrac-
tion procedure can be found elsewhere (Kloiber and
Konrat, 2000). Intensities for scalar coupling constants
were back-calculated from the published rates (Hu and
Bax, 1996) assuming TC = 40 ms and an estimated
noise level of 1% with respect to the reference peak in
the 2D quantitative J-experiment.

Z-surfaces were calculated in a �(i−1)/ϕ(i) space
on a per-residues basis, and positions and heights
of maxima in Z were subsequently evaluated. The
uniqueness of a solution was determined discarding
maxima lower than 95% of the height of the absolute
maximum and subjecting remaining maxima to an an-
alytical error analysis. Differentiation of Z (in this

Figure 3. Correlation between calculated and experimental val-
ues of (A) �Hα(i−1)Cα(i−1),H(i)N(i) and (B) �Hα(i)Cα(i),H(i)N(i) for
non-glycine residues in ubiquitin (Vijay-Kumar et al., 1987; Wand
et al., 1996). For the calculation (using Equations 5a and 5b) stan-
dard bond lengths and angles (rNH = 1.00 Å and rCH = 1.09 Å)
were used. �Hα(i)Cα(i),H(i)N(i) and �Hα(i−1)Cα(i−1),H(i)N(i) di-
pole/dipole cross-correlation experiments were recorded using the
pulse sequences of Figures 1A and 1B. Outliers are labeled accord-
ing to their residue position.

case the deviations were not weighted with the fac-
tor (1 − Pi)) with respect to the uncertainty in the
deviations ��i in each experiment yields

∂ ln Z = 2�i��i∂��i (10)

with i ranging over the six experiments. Since all
parameters are defined for each point of the sur-
face (the uncertainty in the deviations is equal to the
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Table 4. Karplus parameters for cross-correlated spin relaxation rates and
homonuclear 3JC′C′ scalar coupling constants

Experiment A B C D

�Hα(i)Cα(i),H(i)N(i) 1.006 −0.4005 −0.4601 −60

�Hα(i−1)Cα(i−1),H(i)N(i) 1.006 0.4005 −0.4601 −120

�C′(i−1),Hα(i)Cα(i) 129.64 −21.66 −96.82 120

�C′(i−1),Hα(i−1)Cα(i−1) 129.64 −21.66 −96.82 −120

�Hα(i−1)Cα(i−1),Hα(i)Cα(i) 1.199 −0.824 −0.483 180
3JC′C′ 1.33 −0.88 0.62 0

experimental error σi), the error in Z can be deter-
mined for the two highest maxima and subsequently
be compared to the difference in their Z values; the
highest maximum was assumed to be unique in case
the difference in Z values exceeded the sum of their
respective errors. Errors in extracted angles were cal-
culated based on a Monte Carlo analysis that was
carried out simultaneously for all intensities involved
in finding one dihedral angle pair. In analogy to the
error analysis in the individual experiments, intensities
were varied in a range ± 4 times the root-mean-
square baseline noises of the pertinent experiment and
weighted by their Gaussian probability. This proce-
dure is time-consuming in that a Z-surface has to be
generated for each initial condition. Therefore, repre-
sentative residues Lys6 (β-sheet) and Ala28 (α-helix)
were chosen in order to investigate the influence of
experimental errors in regions of well-defined sec-
ondary structure. The resulting standard deviation in
angles (ϕ/�) after 2000 repeats amounted to about
(2.5◦/3.1◦) for residue Lys6 and about (0.6◦/1.9◦) for
residue 28 (see also Table 5). These surprisingly small
values are presumably due to the fact that the simul-
taneous random variations of all intensities result in a
partial compensation of deviations.

Automated analysis and extraction of dihedral angles

A Matlab-based program was developed to automat-
ically derive backbone dihedral angles from exper-
imental data. The program computes experimental
rates on the basis of cross peak intensities, experi-
mental errors on the basis of intensities and the root
mean square noise as estimated by the program NM-
RPipe, and theoretical rates on the basis of Karplus
equations for grid points of specified resolution of 1◦
on the ϕ(i)/�(i−1) surface. The program has been im-
plemented on UNIX platforms and is available from
the authors upon request.

Table 5. Deviations in angles for two representative
residues in ubiquitin: deviations in the individual experi-
ments and deviations according to the Z-surface analysis.
The precision of the obtained angles are estimated from
a Monte Carlo error analysis

Parameter Thr7 (◦) Ala28 (◦)

�Hα(i)Cα(i),H(i)N(i) 13.8 0.3

�Hα(i−1)Cα(i−1),H(i)N(i) 6.7 1.2

�C′(i−1),Hα(i)Cα(i) 10.0 5.5

�C′(i−1),Hα(i−1)Cα(i−1) 0.4 1.4

�Hα(i−1)Cα(i−1),Hα(i)Cα(i) 50.7 3.9
3JC′C′ 13.6 8.5

Z-surface (ϕ) 4.2 0.1

Z-surface (�) 4.8 2.0

Error analysis (ϕ)a 2.5 0.6

Error analysis (�)a 3.1 1.9

aError propagation was obtained from a Monte Carlo
error analysis (see Materials and methods).

Results and discussion

The proposed sequences for �Hα(i−1)Cα(i−1),N(i)HN(i)
and �Hα(i)Cα(i),N(i)HN(i) (Figure 1) provide good
signal-to-noise, notably by refocusing the passive
1,2JNCα couplings. Figure 3 illustrates the correla-
tion between measured �Hα(i−1)Cα(i−1),H(i)N(i) (A) and
�Hα(i)Cα(i),H(i)N(i) (B) values for non-glycine residues
in ubiquitin using the pulse scheme of Figure 1. The
values of ϕ and ψ were taken from the X-ray-derived
structure (Vijay-Kumar et al., 1987). A correlation
time of 4.2 ns was used. On average, the correlations
between predicted and measured �Hα(i)Cα(i),H(i)N(i)
and �Hα(i−1)Cα(i−1),H(i)N(i) values are quite good and
comparable to the previously published sequences by
Bodenhausen and co-workers (Pelupessy et al., 1999;
Chiarparin et al., 1999, 2000). Some deviations be-
tween predicted and NMR-derived values were ob-
served for residues: Thr14, Thr22, Gln31, Asp52,
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Figure 4. Schematic description of the generation of the dihedral angle probability surface, Z-Surface. The cross-correlation rates
are defined as follows: �1(ψ) = CSA/dipole �C′(i),Cα(i)Hα(i) ; �2(ϕ) = CSA/dipole �C′(i−1),Cα(i)Hα(i); �3(ϕ) = dipole/dipole

�Cα(i)Hα(i),N(i)H(i); �4(ψ) = dipole/dipole �Cα(i−1)Hα(i−1),N(i)H(i); �5(ϕ,ψ) = dipole/dipole �Cα(i−1)Hα(i−1),Cα(i)Hα(i); (A) 1Z{�1(ψ)};

(B) 2Z{�1(ψ)�2(ϕ)}; (C) 3Z{�1(ψ)�2(ϕ)�3(ϕ)}; (D) 4Z{�1(ψ)�2(ϕ)�3(ϕ)�4(ψ)}; (E) 5Z{�1(ψ)�2(ϕ)�3(ϕ)�4(ψ)�5(ϕ,ψ)}; (F)
6Z{�1(ψ)�2(ϕ)�3(ϕ)�4(ψ)�5(ϕ,ψ)3JC′C′ (ϕ)}. Hypothetical dipole/dipole and CSA/dipole cross-correlation rates were computed for a
dihedral angle pair ϕ(i),ψ(i−1) = −100◦, 100◦. The 3JC′C′ scalar coupling constant was calculated using the empirical Karplus relation
(Hu and Bax, 1996). In the calculation standard bond lengths (rNH = 1.00 Å and rCH = 1.09 Å) and angles, planar peptide bond geometry, and
uniform values for both the components of the 13C′ CSA tensor and the orientation of the tensor with respect to the molecular peptide frame
were assumed (Teng et al., 1992). The correlation time τC was 4.2 ns.

Asn62, and Arg74 {�(i−1)}, and Thr9, Ser20, Glu34,
Leu43, Asn62, Thr66, Arg72, and Arg74 {ϕ(i)}, the
most significant outliers are labeled in Figure 3. Some
of these residues were identified as flexible, as estab-
lished by 15N relaxation (Thr9 has an order parameter
of 0.73 and a lower than average NOE; Ser20 has a
slightly lowered NOE of 0.66, Asn62 has an NOE
of 0.6 and an order parameter of 0.70, Leu73 with
an NOE of 0.35 and an order parameter of 0.56, and
Arg74 exhibiting an NOE of almost zero; T1/T2 ratio
for Arg74 is lower than average, i.e., 1.62, the aver-

age value being 2.69 ± 0.33) (Tjandra et al. 1995), or
13Cα-1Hα transverse relaxation (Ile13, Glu34, Ile61,
Arg72, Leu73, Arg74) (Wand et al. 1996) (note that
dynamics of the CαHα vector of residue i−1 affects
the rate of residue i in case of �Hα(i−1)Cα(i−1),H(i)N(i)),
others exhibited low signal/noise ratios (Thr9, Asp21,
Leu43, Arg74 in �Hα(i)Cα(i),H(i)N(i)). Neither evi-
dence for dynamics nor low S/N have been found
for (Thr22/Asp21), (Gln31/Ile30), (Asp52/Glu51) and
(Thr66/Ser65). 15N relaxation data are missing for
Arg72, Gln31 and Ile13, and 13Cα relaxation data are
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missing for Ser20, Asp21, Glu51 and Asp58. How-
ever, Cα relaxation for Ile30 indicates an internal
correlation time of > 1 ns, which could eventually
indicate that the extracted order parameter of 0.93 may
be unreliable.

Surfaces shown in Figure 4 are hypothetical and
simply illustrate the construction of the Z-surface
based on cross-correlation rates and 3JC′C′ scalar cou-
pling constants. It shows the decrease in multiplicity
of solutions as a larger number of experiments is
employed. Note that by the use of the five cross-
correlated relaxation experiments alone, it is impos-
sible to resolve the residual two-fold degeneracy of
solutions that are due to the similar symmetry prop-
erties of the interactions with respect to the dihedral
angles. The 3JC ′(i)C ′(i+1) coupling constant is sym-
metric around ϕ = 0◦ rather than ϕ = 120◦ and is
crucial for ruling out residual ϕ ambiguities. Typical
examples of experimental data obtained on ubiquitin
are shown in Figure 5. In this case, five experimen-
tal cross-correlation rates (see Materials and methods)
and the 3JC ′C ′ scalar coupling constant were used to
construct the Z-surfaces as outlined in Equation 1.
Peptide planes Thr7/Lys6 and Ala28/Lys27 were taken
as representative examples for β-sheet or α-helical
secondary structure elements. The procedure was per-
formed on a per-residue basis in ubiquitin. The N-
terminal, C-terminal residues, prolines, glycines, and
residues following a glycine in the sequence have been
excluded from the analysis, and residues Glu16 and
Glu24 have not been assigned, so that the final set
comprised 60 residues. However, not all residues gave
a complete set of experimental data. The two data sets
for �Hα(i−1)Cα(i−1),Hα(i)Cα(i) involving different relax-
ation delays were complementary to some extent as
to which resonances could be observed. Thus, both
sets have been combined, taking into account residues
with available data in either of the two experiments. A
complete set of experimental data was thus obtained
for 31 residues (51.7%), for 18 residues (30.5%) one
experiment was missing, and 6 residues (10.0%) pro-
vided only 4 experiments. For 5 residues (8.3%) less
than 4 experiments could be obtained. In the following
we list the percentages of completeness for the five
individual cross-correlation and the 3J scalar coupling
experiments (refering to the 60 analyzed residues):
CSA/DD (ψ) (Yang et al., 1997, 1998; Yang and
Kay, 1998): 96.6% (58); CSA/DD (ϕ) (Kloiber and
Konrat, 2000a): 75.0% (45); DD/DD (ψ) (Pelupessy
et al., 1999): 81.7% (49); DD/DD (ϕ) (Chiarparin
et al., 1999): 86.7% (52); DD/DD (�) (Chiarparin

et al., 2000): 98.3% (59 residues; 51 and 58 for the
experiments with 15 ms and 20 ms, respectively);
3JC ′C ′ (ϕ) (Hu et al. 1995): 88.3% (53). 96.8% of the
residues with a complete data set revealed a unique
solution. For 72.2% of the residues with only 5 exper-
iments available, a unique pair of (ϕ(i),ψ(i−1)) values
could be obtained. Of residues for which only 4 ex-
periments were available only one did reveal a unique
solution (16.7%). Thus, the total number of residues
for which a unique solution was obtained is 44 which
corresponds to 73.3% of the residues of the data set
(60 residues). For 21 residues (26.7%), ambiguous
although not necessarily wrong ϕ(i),ψ(i−1)) values
were obtained. Of course, the most obvious cause for
non-unique solutions is the incompleteness of the data
set. Residues with 5 experiments have a second so-
lution in 5 of 18 cases. The question of whether the
solution can be found in these cases is strongly de-
pendent on the type of experiment missing. Naturally,
if the coupling constant or �Hα(i−1)Cα(i−1),Hα(i)Cα(i)
is not available, there is no possibility of resolv-
ing all ambiguities. However, there are cases where
�C′(i−1),Hα(i)Cα(i) is missing; this rate is, in some
cases, not necessary to get a single solution, since
�Hα(i)Cα(i),N(i)HN(i) provides the means to distinguish
negative from positive ϕ angles for certain ranges, and
the coupling constant shows no degeneracy between
ϕ = −180◦ and approximately −100◦. Therefore,
solutions can be found for residues in extended con-
formation, even if �C′(i−1),Hα(i)Cα(i) is missing (e.g.,
Arg42-Phe45). However, the better sensitivity of the
�C′(i−1),Hα(i)Cα(i) compared to the �Hα(i)Cα(i),N(i)HN(i)
experiment confers the advantage of higher accuracy.
On the other hand, in α-helices, it might be suffi-
cient to have only one experiment for � since in case
of only twofold degeneracy {�C′(i−1),Hα(i−1)Cα(i−1)},
�Hα(i−1)Cα(i−1),Hα(i)Cα(i) is sufficient to discern the
two solutions. In some rare cases, residual ambiguities
are due to symmetry, although a complete data set is
available. Given that a set of distinct solutions is pro-
vided by the procedure (be it for reasons of symmetry
or lack of data), one could think of using additional in-
formation such as provided by the chemical shift data
base TALOS (Cornilescu et al., 1999) to distinguish
between the solutions. Using this approach, residual
ambiguities could be resolved for additional residues
Gln2, Ser20, Ile23, Asn25, Lys29, Glu34, Tyr59 and
Gln60.

Figure 6 illustrates the correlation between NMR
(Cornilescu et al., 1998) and X-ray-derived ϕ and ψ

values for ubiquitin (Vijay-Kumar et al., 1987). The
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Figure 5. Experimental Z-surface plots, 6Z{�1(ψ)�2(ϕ)

�3(ϕ)�4(ψ)�5(ϕ,ψ) �6(ϕ)}, for Thr7/Lys6 (β-sheet) and
Ala28/Lys27 (α-helix) in ubiquitin. Calculation parameters were
identical to Figure 4.

following residues yielded solutions deviating from
the x-ray structure: Phe4 and Glu18 (yielded sym-
metry related dihedral angles which could not be re-
solved), Thr14 (low S/N in �Hα(i−1)Cα(i−1),Hα(i)Cα(i)),
Asp21 (low S/N in �Hα(i−1)Cα(i−1),Hα(i)Cα(i) experi-
ment), Gln31 (with a rate �Hα(i−1)Cα(i−1),N(i)HN(i) that
is typical for a positive � value, although the residue
is located in an α-helix). Residue Glu51 comes out
right using �Hα(i−1)Cα(i−1),Hα(i)Cα(i) recorded with a
delay of 20 ms; this residue as well as Asp58 do
not show strongly deviating rates but give, due to
the lack of one experimental data set each, two sim-
ilar solutions. Residues Thr9 and Arg74 yield wrong
solutions but are located in a loop region and at the C-
terminus of the protein, respectively. Note that outliers
mainly concern the angle �(i−1), since the procedure
shows a bias towards the determination of ϕ(i) (4 vs
3 experiments). We assume that the observed devia-
tions are due to significant intramolecular dynamics at
these sites. For example, the peptide plane Thr9/Leu8

is located in a loop connecting strand β1 and β2;
Asp21/Ser20 is within a loop between β2 and the α-
helix, Gln31/Ile30 is located towards the C-terminus
of the α-helix (in the X-Ray structure the helix ex-
tends till Glu34), Glu51/Leu50 is at the end of β5,
Asp58/Ser57 is within the 310 helix, and Arg74/Leu73
is close to the C-terminus of the polypetide chain (76
residues). The most interesting outliers, however, are
the peptide planes Phe4/Ile3 and Thr14/Ile13 which
are located in strands β1 and β2 and are connected
via inter-strand hydrogen bonds (HN{I3}-CO{L15};
HN{V5}-CO{I13}, Cordier and Grzesiek, 1999), in-
dicating that the observed deviations reflect correlated
motion in this β-sheet. Most importantly, in an in-
dependent study Bodenhausen and co-workers (Tol-
man et al., 2000) have shown that inconsistencies
between dihedral angles derived from four comple-
mentary cross-correlation rates for Phe4 and Val5 can
be resolved by assuming a model in which the peptide
plane spanned by the Val5/Phe4 jumps through 40◦
between two sites.

The pairwise root-mean-squared differences (cal-
culated disregarding the above-mentioned outliers)
for (ϕ/�) are (14.44◦/14.18◦) and (14.41◦/12.00◦)
for angles derived from the X-ray structure and
the NMR ensemble, respectively. The observed
rmsd values compare favorably with the pairwise
rmsd values obtained from an analysis of the back-
bone angles in the single experiments: using only
residues that gave unique solutions (outliers ex-
cluded), rmsd values (and number of observations)
were: for � 5.67◦ (34) (�C′(i−1),Hα(i−1)Cα(i−1)),
8.05◦ (29) (�Hα(i−1)Cα(i−1),N(i)HN(i)); for
ϕ 6.84◦ (29) (�C′(i−1),Hα(i)Cα(i)) and 10.70◦ (33)
(�Hα(i)Cα(i),N(i)HN(i)), deviations for � were slightly
higher, i.e., 11.79◦ (33). The 3JC′(i)C′(i+1) coupling
constant shows an rmsd of 6.40◦ (35). Direct compar-
ison of deviations in angles in the single experiments
with those extracted by the combined use thereof for
the two well-defined residues Lys6 and Ala28 reveals
that, although somewhat erroneous rates may yield
wrong angles if single rates are used, rather exact an-
gles are found upon combination (see Table 5). This
finding is also in accordance with the Monte Carlo
error analysis performed on those residues which
yielded errors in angles of about 3◦ (see Materials
and methods). Generally, the deviation in one rate –
if not too extreme – may result in a significant de-
crease in the Z-value, but will not necessarily shift the
extracted maximum position, since one rate presents
only a small bias to the fitting procedure. The scatter
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Figure 6. Correlation between values of ϕ (circles) and ψ (diamonds) determined from Z-surface analysis (NMR) and from the X-ray
structure of ubiquitin (X-Ray) (Vijay-Kumar et al., 1987). The Z-surface analysis employed 3JC′C′ scalar coupling constants, CSA/dipole
(�C′(i−1),Cα(i)Hα(i) and �C′(i),Cα(i)Hα(i)) and dipole/dipole (�Hα(i)Cα(i),H(i)N(i), �Hα(i−1)Cα(i−1),H(i)N(i) and �Cα(i−1)Hα(i−1),Cα(i)Hα(i))
cross-correlation rates. Peptide planes which showed significant deviations are depicted as open symbols and are labeled according to their
residue position (see text).

in angles observed over the whole protein can be as-
cribed to the neglect of contributions from a second
cross-correlation rate in the �C′(i−1),Hα(i−1)Cα(i−1),
�C′(i−1),Hα(i)Cα(i), and the �Hα(i)Cα(i),Hα(i−1)Cα(i−1)

experiments, variations in the magnitude and orienta-
tion of CSA tensor components in case of CSA/DD
experiments, and intramolecular motion.

In order to account for the influence of intramole-
cular dynamics, we corrected the experimental cross-
correlation rates by taking into account 15N relaxation
data (i.e., experimental cross-correlation rates were di-
vided by the 15N order parameter) prior to the fitting
procedure. Of course, this is a simplification, since dy-
namics of vectors other than N-HN cannot be assumed
to be reflected by 15N order parameters, and as such,
this correction may not be sufficient. To assess the in-
fluence of internal dynamics on the extracted angles,
more sophisticated motional models have been used
to generate data sets which were in turn subjected to
the Z-surface procedure. The first model assumed har-
monic motion around the Cα(i − 1)-C′(i − 1) and the
N(i)-Cα(i) bonds, respectively, leading to averaging of
the backbone dihedral angles ϕ and �; this redefines
Karplus coefficients according to a parameter σ that
reflects the width of a Gaussian distribution around

the respective dihedral angle (Brüschweiler and Case,
1994):

A∗ = A exp(−2σ2), (11a)

B∗ = B exp(−σ2/2), (11b)

C∗ = A/2[1 − exp(−2σ2)] + C. (11c)

Data were calculated assuming dihedral angle val-
ues for two representative residues Lys6 and Ala28,
with σ being varied for both angles in a parallel
manner in steps of 5◦ ranging up to 30◦ for both
ϕ(i) and �(i − 1), whereas averaging around the
Cα(i)-Cα(i − 1) axis (affecting �(i)) was assigned a
parameter σ = 0◦ (representing the bond vectors
Cα(i)-Hα(i) and Cα(i − 1)-Hα(i − 1) as fixed with re-
spect to each other, whereas the encased peptide plane
fluctuates). The second model tested was the GAF
model (Brüschweiler and Wright, 1994) with motion
only around the Cα(i)-Cα(i − 1) axis. Here, cross-
correlation order parameters were calculated that de-
pend on the projections of the individual vectors onto
the axis of rotation (Brüschweiler and Wright, 1994):

S2 = 1 − 3 sin θ1 sin θ2{cos θ1 cos θ2[1 − exp(−σ2)]
+ 1/4 sin θ1 sin θ2[1 − exp(−4σ2)]}. (12)
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Data were created for steps of 5◦ up to 30◦. It
could be shown that individual rates may vary signif-
icantly over this range. For Lys6 (located in a β-sheet
with angles ϕ(i)/�(i − 1) = −95◦/114◦), the differ-
ences between exact angles and angles extracted for
σ = 20◦ are (−7.2◦/+7.5◦) for the isotropic model
and (−18◦/+6.5◦) for the GAF model, and Z-values
drop from 1 to 0.76 and 0.07, respectively. Influence
of averaging and motion on rates of Ala28 (located
in the α-helix, ϕ(i)/�(i − 1) = −66◦/−38◦) are some-
what less pronounced, angles change by (+2◦/−5◦)
and (−2◦/+8◦), respectively, and Z-values drop from
1 to 0.96 and 0.60 for the two models. The impact
of the first model on cross-correlation rates derives
from the shape of the theoretical relationships (rep-
resented by the Karplus relations). Harmonic motion
as encountered in this model results in smoothing of
the curves, the extent of which is dependent on the
dihedral angles; generally, in ‘flat’ regions, large al-
terations should be expected, whereas the influence
is less pronounced in the steeper parts. Therefore,
the modifications expected for an α-helix are gener-
ally small, whereas extended conformations (ϕ, � ≈
−100◦/120◦) are expected to vary to a larger extent.
GAF like motion (Brüschweiler and Wright, 1994),
on the contrary, is determined by projections of vec-
tors onto the Cα(i)-Cα(i − 1)-axis, rendering extended
conformations more sensitive to such dynamics than
α-helices (where rates determining � are almost unaf-
fected in the GAF model), especially in the CSA/DD
experiments. In any case, the effect on extracted angles
is minor unless local dynamics are unusually high. Ac-
cording to these preliminary simulations as well as to
the experimental findings that deviations may compen-
sate upon combining experiments, we do not expect
moderate dynamics to deteriorate the applicability of
the procedure. However, residues with substantially
smaller than average 15N heteronuclear NOE values
and larger than average 15N T1/T2 ratios should be
discarded from the analysis.

Conclusion

In summary, two new pulse sequences have
been proposed for measuring �Hα(i)Cα(i),H(i)N(i) and
�Hα(i−1)Cα(i−1),H(i)N(i) dipole/dipole relaxation inter-
ference in 15N,13C-labeled proteins. The experi-
ments have improved sensitivity due to refocus-
ing of passive 1,2JNCα scalar couplings. Together
with existing methods for the quantification of

CSA/dipole relaxation interferences, backbone di-
hedral angle probability surfaces can be obtained
with high degrees of confidence. In many cases,
a simultaneous interpretation of �Hα(i)Cα(i),H(i)N(i),
�Hα(i−1)Cα(i−1),H(i)N(i) and �Cα(i−1)Hα(i−1),Cα(i)Hα(i)
dipole/dipole, �C′(i−1),Cα(i)Hα(i) and �C′(i),Cα(i)Hα(i)
CSA/dipole cross-correlation rates and 3JC′C′ scalar
couplings can be used to unambiguously determine
backbone dihedral angles in 13C,15N-labeled proteins.
Extensions of the method to partially folded and/or un-
folded states are straightforward and currently under
investigation in our laboratory.
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